Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes.

نویسندگان

  • Ying Liu
  • Fei Liu
  • Inge Grundke-Iqbal
  • Khalid Iqbal
  • Cheng-Xin Gong
چکیده

Brain glucose metabolism is impaired in Alzheimer's disease (AD), the most common form of dementia. Type 2 diabetes mellitus (T2DM) is reported to increase the risk for dementia, including AD, but the underlying mechanism is not understood. Here, we investigated the brain insulin-PI3K-AKT signalling pathway in the autopsied frontal cortices from nine AD, 10 T2DM, eight T2DM-AD and seven control cases. We found decreases in the levels and activities of several components of the insulin-PI3K-AKT signalling pathway in AD and T2DM cases. The deficiency of insulin-PI3K-AKT signalling was more severe in individuals with both T2DM and AD (T2DM-AD). This decrease in insulin-PI3K-AKT signalling could lead to activation of glycogen synthase kinase-3β, the major tau kinase. The levels and the activation of the insulin-PI3K-AKT signalling components correlated negatively with the level of tau phosphorylation and positively with protein O-GlcNAcylation, suggesting that impaired insulin-PI3K-AKT signalling might contribute to neurodegeneration in AD through down-regulation of O-GlcNAcylation and the consequent promotion of abnormal tau hyperphosphorylation and neurodegeneration. The decrease in brain insulin-PI3K-AKT signalling also correlated with the activation of calpain I in the brain, suggesting that the decrease might be caused by calpain over-activation. Our findings provide novel insight into the molecular mechanism by which type 2 diabetes mellitus increases the risk for developing cognitive impairment and dementia in Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...

متن کامل

Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice

Recent studies have shown the therapeutic potential of curcumin in Alzheimer's disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating ...

متن کامل

H2O2 Signalling Pathway: A Possible Bridge between Insulin Receptor and Mitochondria

This review is focused on the mechanistic aspects of the insulin-induced H2O2 signalling pathway in neurons and the molecules affecting it, which act as risk factors for developing central insulin resistance. Insulin-induced H2O2 promotes insulin receptor activation and the mitochondria act as the insulin-sensitive H2O2 source, providing a direct molecular link between mitochondrial dysfunction...

متن کامل

Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease.

Type 2 diabetes has been identified as a risk factor for patients with Alzheimer's disease. Insulin signalling is often impaired in Alzheimer's disease, contributing to the neurodegenerative process. One potential strategy to help prevent this is the normalisation of insulin signalling in the brain. Therefore, the present study was designed to test the effects of novel enzyme-resistant analogue...

متن کامل

The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons.

Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pathology

دوره 225 1  شماره 

صفحات  -

تاریخ انتشار 2011